231 |
Rectified 321 |
Birectified 321 |
Rectified 132 |
132 |
231 |
Rectified 231 |
|
Orthogonal projections in E6 Coxeter plane |
---|
In 7-dimensional geometry, the 321 polytope is a uniform 6-polytope, constructed within the symmetry of the E7 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure.[1]
Coxeter named it 321 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 3-node sequences.
The rectified 321 is constructed by points at the mid-edges of the 321. The birectified 321 is constructed by points at the triangle face centers of the 321. The trirectified 321 is constructed by points at the tetrahedral centers of the 321, and is the same as the rectified 132.
These polytopes are part of a family of 127 (27-1) convex uniform polytopes in 7-dimensions, made of uniform 6-polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: .
Contents |
This polytope, along with the 7-simplex, can tessellate 7-dimensional space, represented by 331 and Coxeter-Dynkin diagram: .
321 polytope | |
---|---|
Type | Uniform 7-polytope |
Family | k21 polytope |
Schläfli symbol | {3,3,3,32,1} |
Coxeter symbol | 321 |
Coxeter-Dynkin diagram | |
6-faces | 702 total: 126 311 576 {35} |
5-faces | 6048: 4032 {34} 2016 {34} |
4-faces | 12096 {33} |
Cells | 10080 {3,3} |
Faces | 4032 {3} |
Edges | 756 |
Vertices | 56 |
Vertex figure | 221 polytope |
Petrie polygon | octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
In 7-dimensional geometry, the 321 is a uniform polytope. It has 56 vertices, and 702 facets: 126 311 and 576 6-simplex.
For visualization this 7-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 56 vertices within a 18-gonal regular polygon (called a Petrie polygon). Its 756 edges are drawn between 3 rings of 18 vertices, and 2 vertices in the center. Specific higher elements (faces, cells, etc) can also be extracted and drawn on this projection.
The 1-skeleton of the 321 polytope is called a Gosset graph.
The 56 vertices can be most simply represented in 8-dimensional space, obtained by the 28 permutations of the coordinates and their opposite:
Its construction is based on the E7 group. Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single nodea_1 on the end of the 3-node sequence.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the 6-simplex, .
Removing the node on the end of the 2-length branch leaves the 6-orthoplex in its alternated form: 311, .
Every simplex facet touches an 6-orthoplex facet, while alternate facets of the orthoplex touch either a simplex or another orthoplex.
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 221 polytope, .
E7 | E6 / F4 | B7 / A6 |
---|---|---|
[18] |
[12] |
[7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] |
[12/2] |
[10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] |
[6] |
[4] |
Rectified 321 polytope | |
---|---|
Type | Uniform 7-polytope |
Schläfli symbol | t1{3,3,3,32,1} |
Coxeter symbol | t1(321) |
Coxeter-Dynkin diagram | |
6-faces | 758 |
5-faces | 44352 |
4-faces | 70560 |
Cells | 48384 |
Faces | 11592 |
Edges | 12096 |
Vertices | 756 |
Vertex figure | 5-demicube prism |
Petrie polygon | octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
Its construction is based on the E7 group. Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single node on the end of the 3-node sequence.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the 6-simplex, .
Removing the node on the end of the 2-length branch leaves the rectified 6-orthoplex in its alternated form: t1311, .
Removing the node on the end of the 3-length branch leaves the 221, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 5-demicube prism, .
E7 | E6 / F4 | B7 / A6 |
---|---|---|
[18] |
[12] |
[7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] |
[12/2] |
[10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] |
[6] |
[4] |
Birectified 321 polytope | |
---|---|
Type | Uniform 7-polytope |
Schläfli symbol | t1{3,3,3,32,1} |
Coxeter symbol | t1(321) |
Coxeter-Dynkin diagram | |
6-faces | 758 |
5-faces | 12348 |
4-faces | 68040 |
Cells | 161280 |
Faces | 161280 |
Edges | 60480 |
Vertices | 4032 |
Vertex figure | 5-cell-triangle duoprism |
Petrie polygon | octadecagon |
Coxeter group | E7, [33,2,1] |
Properties | convex |
Its construction is based on the E7 group. Coxeter named it as 321 by its bifurcating Coxeter-Dynkin diagram, with a single node on the end of the 3-node sequence.
The facet information can be extracted from its Coxeter-Dynkin diagram, .
Removing the node on the short branch leaves the birectified 6-simplex, .
Removing the node on the end of the 2-length branch leaves the birectified 6-orthoplex in its alternated form: t2(311), .
Removing the node on the end of the 3-length branch leaves the rectified 221 polytope in its alternated form: t1(221), .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 5-cell-triangle duoprism, .
E7 | E6 / F4 | B7 / A6 |
---|---|---|
[18] |
[12] |
[7x2] |
A5 | D7 / B6 | D6 / B5 |
[6] |
[12/2] |
[10] |
D5 / B4 / A4 | D4 / B3 / A2 / G2 | D3 / B2 / A3 |
[8] |
[6] |
[4] |